JFIFXX    $.' ",#(7),01444'9=82<.342  2!!22222222222222222222222222222222222222222222222222"4 ,PG"Z_4˷kjزZ,F+_z,© zh6٨icfu#ډb_N?wQ5-~I8TK<5oIv-k_U_~bMdӜUHh?]EwQk{_}qFW7HTՑYF?_'ϔ_Ջt=||I 6έ"D/[k9Y8ds|\Ҿp6Ҵ].6znopM[mei$[soᘨ˸ nɜG-ĨUycP3.DBli;hjx7Z^NhN3u{:jx힞#M&jL P@_ P&o89@Sz6t7#Oߋ s}YfTlmrZ)'Nk۞pw\Tȯ?8`Oi{wﭹW[r Q4F׊3m&L=h3z~#\l :F,j@ ʱwQT8"kJO6֚l}R>ډK]y&p}b;N1mr$|7>e@BTM*-iHgD) Em|ؘbҗaҾt4oG*oCNrPQ@z,|?W[0:n,jWiEW$~/hp\?{(0+Y8rΟ+>S-SVN;}s?. w9˟<Mq4Wv'{)01mBVW[8/< %wT^5b)iM pgN&ݝVO~qu9 !J27$O-! :%H ـyΠM=t{!S oK8txA& j0 vF Y|y ~6@c1vOpIg4lODL Rcj_uX63?nkWyf;^*B @~a`Eu+6L.ü>}y}_O6͐:YrGXkGl^w~㒶syIu! W XN7BVO!X2wvGRfT#t/?%8^WaTGcLMI(J1~8?aT ]ASE(*E} 2#I/׍qz^t̔bYz4xt){ OH+(EA&NXTo"XC')}Jzp ~5}^+6wcQ|LpdH}(.|kc4^"Z?ȕ a<L!039C EuCFEwç ;n?*oB8bʝ'#RqfM}7]s2tcS{\icTx;\7KPʇ Z O-~c>"?PEO8@8GQgaՎ󁶠䧘_%#r>1zaebqcPѵn#L =׀t L7`VA{C:ge@w1 Xp3c3ġpM"'-@n4fGB3DJ8[JoߐgK)ƛ$ 83+ 6ʻ SkI*KZlT _`?KQKdB`s}>`*>,*@JdoF*弝O}ks]yߘc1GV<=776qPTtXԀ!9*44Tހ3XΛex46YD  BdemDa\_l,G/֌7Y](xTt^%GE4}bTڹ;Y)BQu>J/J ⮶.XԄjݳ+Ed r5_D1 o Bx΢#<W8R6@gM. drD>(otU@x=~v2 ӣdoBd3eO6㣷ݜ66YQz`S{\P~z m5{J/L1xO\ZFu>ck#&:`$ai>2ΔloF[hlEܺΠk:)` $[69kOw\|8}ބ:񶐕IA1/=2[,!.}gN#ub ~݊}34qdELc$"[qU硬g^%B zrpJru%v\h1Yne`ǥ:gpQM~^Xi `S:V29.PV?Bk AEvw%_9CQwKekPؠ\;Io d{ ߞoc1eP\ `E=@KIRYK2NPlLɀ)&eB+ь( JTx_?EZ }@ 6U뙢طzdWIn` D噥[uV"G&Ú2g}&m?ċ"Om# {ON"SXNeysQ@FnVgdX~nj]J58up~.`r\O,ư0oS _Ml4kv\JSdxSW<AeIX$Iw:Sy›R9Q[,5;@]%u@ *rolbI  +%m:͇ZVủθau,RW33 dJeTYE.Mϧ-oj3+yy^cVO9NV\nd1 !͕_)av;թMlWR1)ElP;yوÏu 3k5Pr6<⒲l!˞*u־n!l:UNW %Chx8vL'X@*)̮ˍ D-M+JUkvK+x8cY?Ԡ~3mo|u@[XeYC\Kpx8oCC&N~3-H MXsu<`~"WL$8ξ3a)|:@m\^`@ҷ)5p+6p%i)P Mngc#0AruzRL+xSS?ʮ}()#tmˇ!0}}y$6Lt;$ʳ{^6{v6ķܰgVcnn ~zx«,2u?cE+ȘH؎%Za)X>uWTzNyosFQƤ$*&LLXL)1" LeOɟ9=:tZcŽY?ӭVwv~,Yrۗ|yGaFC.+ v1fήJ]STBn5sW}y$~z'c 8  ,! pVNSNNqy8z˱A4*'2n<s^ǧ˭PJޮɏUGLJ*#i}K%,)[z21z ?Nin1?TIR#m-1lA`fT5+ܐcq՝ʐ,3f2Uեmab#ŠdQy>\)SLYw#.ʑf ,"+w~N'cO3FN<)j&,- љ֊_zSTǦw>?nU仆Ve0$CdrP m׈eXmVu L.bֹ [Դaզ*\y8Է:Ez\0KqC b̘cөQ=0YsNS.3.Oo:#v7[#߫ 5܎LEr49nCOWlG^0k%;YߝZǓ:S#|}y,/kLd TA(AI$+I3;Y*Z}|ӧOdv..#:nf>>ȶITX 8y"dR|)0=n46ⲑ+ra ~]R̲c?6(q;5% |uj~z8R=XIV=|{vGj\gcqz؋%Mߍ1y#@f^^>N#x#۹6Y~?dfPO{P4Vu1E1J *|%JN`eWuzk M6q t[ gGvWIGu_ft5j"Y:Tɐ*; e54q$C2d} _SL#mYpO.C;cHi#֩%+) ӍƲVSYźg |tj38r|V1#;.SQA[S#`n+$$I P\[@s(EDzP])8G#0B[ىXIIq<9~[Z멜Z⊔IWU&A>P~#dp]9 "cP Md?٥Ifتuk/F9c*9Ǎ:ØFzn*@|Iށ9N3{'['ͬҲ4#}!V Fu,,mTIkv C7vB6kT91*l '~ƞFlU'M ][ΩũJ_{iIn$L jOdxkza۪#EClx˘oVɞljr)/,߬hL#^Lф,íMƁe̩NBLiLq}(q6IçJ$WE$:=#(KBzђ xlx?>Պ+>W,Ly!_DŌlQ![ SJ1ƐY}b,+Loxɓ)=yoh@꥟/Iѭ=Py9 ۍYӘe+pJnϱ?V\SO%(t =?MR[Șd/ nlB7j !;ӥ/[-A>dNsLj ,ɪv=1c.SQO3UƀܽE̻9GϷD7(}Ävӌ\y_0[w <΍>a_[0+LF.޺f>oNTq;y\bՃyjH<|q-eɏ_?_9+PHp$[uxK wMwNی'$Y2=qKBP~Yul:[<F12O5=d]Ysw:ϮEj,_QXz`H1,#II dwrP˂@ZJVy$\y{}^~[:NߌUOdؾe${p>G3cĖlʌ ת[`ϱ-WdgIig2 }s ؤ(%#sS@~3XnRG~\jc3vӍLM[JBTs3}jNʖW;7ç?=XF=-=qߚ#='c7ڑWI(O+=:uxqe2zi+kuGR0&eniT^J~\jyp'dtGsO39* b#Ɋ p[BwsT>d4ۧsnvnU_~,vƜJ1s QIz)(lv8MU=;56Gs#KMP=LvyGd}VwWBF'à ?MHUg2 !p7Qjڴ=ju JnA suMeƆҔ!)'8Ϣٔޝ(Vpצ֖d=ICJǠ{qkԭ߸i@Ku|p=..*+xz[Aqġ#s2aƊRR)*HRsi~a &fMP-KL@ZXy'x{}Zm+:)) IJ-iu ܒH'L(7yGӜq j 6ߌg1go,kرtY?W,pefOQS!K۟cҒA|սj>=⬒˧L[ ߿2JaB~Ru:Q] 0H~]7ƼI(}cq 'ήETq?fabӥvr )o-Q_'ᴎoK;Vo%~OK *bf:-ťIR`B5!RB@ï u ̯e\_U_ gES3QTaxU<~c?*#]MW,[8Oax]1bC|踤Plw5V%){t<d50iXSUm:Z┵i"1^B-PhJ&)O*DcWvM)}Pܗ-q\mmζZ-l@}aE6F@&Sg@ݚM ȹ 4#p\HdYDoH"\..RBHz_/5˘6KhJRPmƶim3,#ccoqa)*PtRmk7xDE\Y閣_X<~)c[[BP6YqS0%_;Àv~| VS؇ 'O0F0\U-d@7SJ*z3nyPOm~P3|Yʉr#CSN@ ƮRN)r"C:: #qbY. 6[2K2uǦHYRQMV G$Q+.>nNHq^ qmMVD+-#*U̒ p욳u:IBmPV@Or[b= 1UE_NmyKbNOU}the`|6֮P>\2PVIDiPO;9rmAHGWS]J*_G+kP2KaZH'KxWMZ%OYDRc+o?qGhmdSoh\D|:WUAQc yTq~^H/#pCZTI1ӏT4"ČZ}`w#*,ʹ 0i課Om*da^gJ݅{le9uF#Tֲ̲ٞC"qߍ ոޑo#XZTp@ o8(jdxw],f`~|,s^f1t|m򸄭/ctr5s79Q4H1꠲BB@l9@C+wpxu£Yc9?`@#omHs2)=2.ljg9$YS%*LRY7Z,*=䷘$armoϰUW.|rufIGwtZwo~5 YյhO+=8fF)W7L9lM̘·Y֘YLf큹pRF99.A "wz=E\Z'a 2Ǚ#;'}G*l^"q+2FQ hjkŦ${ޮ-T٭cf|3#~RJt$b(R(rdx >U b&9,>%E\ Άe$'q't*אެb-|dSBOO$R+H)܎K1m`;J2Y~9Og8=vqD`K[F)k[1m޼cn]skz$@)!I x՝"v9=ZA=`Ɠi :E)`7vI}dYI_ o:obo 3Q&D&2= Ά;>hy.*ⅥSӬ+q&j|UƧ}J0WW< ۋS)jQRjƯrN)Gű4Ѷ(S)Ǣ8iW52No˓ ۍ%5brOnL;n\G=^UdI8$&h'+(cȁ߫klS^cƗjԌEꭔgFȒ@}O*;evWVYJ\]X'5ղkFb 6Ro՜mi Ni>J?lPmU}>_Z&KKqrIDՉ~q3fL:Se>E-G{L6pe,8QIhaXaUA'ʂs+טIjP-y8ۈZ?J$WP Rs]|l(ԓsƊio(S0Y 8T97.WiLc~dxcE|2!XKƘਫ਼$((6~|d9u+qd^389Y6L.I?iIq9)O/뚅OXXVZF[یgQLK1RҖr@v#XlFНyS87kF!AsM^rkpjPDyS$Nqnxҍ!Uf!ehi2m`YI9r6 TFC}/y^Η5d'9A-J>{_l+`A['յϛ#w:݅%X}&PStQ"-\縵/$ƗhXb*yBS;Wջ_mcvt?2}1;qSdd~u:2k52R~z+|HE!)Ǟl7`0<,2*Hl-x^'_TVgZA'j ^2ΪN7t?w x1fIzC-ȖK^q;-WDvT78Z hK(P:Q- 8nZ܃e貾<1YT<,"6{/ ?͟|1:#gW>$dJdB=jf[%rE^il:BxSּ1հ,=*7 fcG#q eh?27,!7x6nLC4x},GeǝtC.vS F43zz\;QYC,6~;RYS/6|25vTimlv& nRh^ejRLGf? ۉҬܦƩ|Ȱ>3!viʯ>vオX3e_1zKȗ\qHS,EW[㺨uch⍸O}a>q6n6N6qN ! 1AQaq0@"2BRb#Pr3C`Scst$4D%Td ?Na3mCwxAmqmm$4n淿t'C"wzU=D\R+wp+YT&պ@ƃ3ޯ?AﶂaŘ@-Q=9Dռѻ@MVP܅G5fY6# ?0UQ,IX(6ڵ[DIMNލc&υj\XR|,4 jThAe^db#$]wOӪ1y%LYm뭛CUƃߜ}Cy1XνmF8jI]HۺиE@Ii;r8ӭVFՇ| &?3|xBMuSGe=Ӕ#BE5GY!z_eqр/W>|-Ci߇t1ޯќdR3ug=0 5[?#͏qcfH{ ?u=??ǯ}ZzhmΔBFTWPxs}G93 )gGR<>r h$'nchPBjJҧH -N1N?~}-q!=_2hcMlvY%UE@|vM2.Y[|y"EïKZF,ɯ?,q?vM 80jx";9vk+ ֧ ȺU?%vcVmA6Qg^MA}3nl QRNl8kkn'(M7m9وq%ޟ*h$Zk"$9: ?U8Sl,,|ɒxH(ѷGn/Q4PG%Ա8N! &7;eKM749R/%lc>x;>C:th?aKXbheᜋ^$Iհ hr7%F$EFdt5+(M6tÜUU|zW=aTsTgdqPQb'm1{|YXNb P~F^F:k6"j! Ir`1&-$Bevk:y#ywI0x=D4tUPZHڠ底taP6b>xaQ# WeFŮNjpJ* mQN*I-*ȩFg3 5Vʊɮa5FO@{NX?H]31Ri_uѕ 0 F~:60p͈SqX#a5>`o&+<2D: ڝ$nP*)N|yEjF5ټeihyZ >kbHavh-#!Po=@k̆IEN@}Ll?jO߭ʞQ|A07xwt!xfI2?Z<ץTcUj]陎Ltl }5ϓ$,Omˊ;@OjEj(ا,LXLOЦ90O .anA7j4 W_ٓzWjcBy՗+EM)dNg6y1_xp$Lv:9"zpʙ$^JԼ*ϭo=xLj6Ju82AH3$ٕ@=Vv]'qEz;I˼)=ɯx /W(Vp$ mu񶤑OqˎTr㠚xsrGCbypG1ߠw e8$⿄/M{*}W]˷.CK\ުx/$WPwr |i&}{X >$-l?-zglΆ(FhvS*b߲ڡn,|)mrH[a3ר[13o_U3TC$(=)0kgP u^=4 WYCҸ:vQרXàtkm,t*^,}D* "(I9R>``[~Q]#afi6l86:,ssN6j"A4IuQ6E,GnHzSHOuk5$I4ؤQ9@CwpBGv[]uOv0I4\yQѸ~>Z8Taqޣ;za/SI:ܫ_|>=Z8:SUIJ"IY8%b8H:QO6;7ISJҌAά3>cE+&jf$eC+z;V rʺmyeaQf&6ND.:NTvm<- uǝ\MvZYNNT-A>jr!SnO 13Ns%3D@`ܟ 1^c< aɽ̲Xë#w|ycW=9I*H8p^(4՗karOcWtO\ƍR8'KIQ?5>[}yUײ -h=% qThG2)"ו3]!kB*pFDlA,eEiHfPs5H:Փ~H0DتDIhF3c2E9H5zԑʚiX=:mxghd(v׊9iSOd@0ڽ:p5h-t&Xqӕ,ie|7A2O%PEhtjY1wЃ!  ࢽMy7\a@ţJ 4ȻF@o̒?4wx)]P~u57X 9^ܩU;Iꭆ 5 eK27({|Y׎ V\"Z1 Z}(Ǝ"1S_vE30>p; ΝD%xW?W?vo^Vidr[/&>~`9Why;R ;;ɮT?r$g1KACcKl:'3 cﳯ*"t8~l)m+U,z`(>yJ?h>]vЍG*{`;y]IT ;cNUfo¾h/$|NS1S"HVT4uhǜ]v;5͠x'C\SBplh}N ABx%ޭl/Twʽ]D=Kžr㻠l4SO?=k M: cCa#ha)ѐxcsgPiG{+xQI= zԫ+ 8"kñj=|c yCF/*9жh{ ?4o kmQNx;Y4膚aw?6>e]Qr:g,i"ԩA*M7qB?ӕFhV25r[7 Y }LR}*sg+xr2U=*'WSZDW]WǞ<叓{$9Ou4y90-1'*D`c^o?(9uݐ'PI& fJݮ:wSjfP1F:X H9dԯ˝[_54 }*;@ܨ ðynT?ןd#4rGͨH1|-#MrS3G3).᧏3vz֑r$G"`j 1tx0<ƆWh6y6,œGagAyb)hDß_mü gG;evݝnQ C-*oyaMI><]obD":GA-\%LT8c)+y76oQ#*{(F⽕y=rW\p۩cA^e6KʐcVf5$'->ՉN"F"UQ@fGb~#&M=8טJNu9D[̤so~ G9TtW^g5y$bY'سǴ=U-2 #MCt(i lj@Q 5̣i*OsxKf}\M{EV{υƇ);HIfeLȣr2>WIȂ6ik 5YOxȺ>Yf5'|H+98pjn.OyjY~iw'l;s2Y:'lgꥴ)o#'SaaKZ m}`169n"xI *+ }FP"l45'ZgE8?[X7(.Q-*ތL@̲v.5[=t\+CNܛ,gSQnH}*FG16&:t4ُ"Ạ$b |#rsaT ]ӽDP7ո0y)e$ٕvIh'QEAm*HRI=: 4牢) %_iNݧl] NtGHL ɱg<1V,J~ٹ"KQ 9HS9?@kr;we݁]I!{ @G["`J:n]{cAEVʆ#U96j#Ym\qe4hB7Cdv\MNgmAyQL4uLjj9#44tl^}LnR!t±]rh6ٍ>yҏNfU  Fm@8}/ujb9he:AyծwGpΧh5l}3p468)Udc;Us/֔YX1O2uqs`hwgr~{ RmhN؎*q 42*th>#E#HvOq}6e\,Wk#Xb>p}դ3T5†6[@Py*n|'f֧>lư΂̺SU'*qp_SM 'c6m ySʨ;MrƋmKxo,GmPAG:iw9}M(^V$ǒѽ9| aJSQarB;}ٻ֢2%Uc#gNaݕ'v[OY'3L3;,p]@S{lsX'cjwk'a.}}& dP*bK=ɍ!;3ngΊUߴmt'*{,=SzfD Ako~Gaoq_mi}#mPXhύmxǍ΂巿zfQc|kc?WY$_Lvl߶c`?ljݲˏ!V6UЂ(A4y)HpZ_x>eR$/`^'3qˏ-&Q=?CFVR DfV9{8gnh(P"6[D< E~0<@`G6Hгcc cK.5DdB`?XQ2ٿyqo&+1^ DW0ꊩG#QnL3c/x 11[yxპCWCcUĨ80me4.{muI=f0QRls9f9~fǨa"@8ȁQ#cicG$Gr/$W(WV"m7[mAmboD j۳ l^kh׽ # iXnveTka^Y4BNĕ0 !01@Q"2AaPq3BR?@4QT3,㺠W[=JKϞ2r^7vc:9 EߴwS#dIxu:Hp9E! V 2;73|F9Y*ʬFDu&y؟^EAA(ɩ^GV:ݜDy`Jr29ܾ㝉[E;FzxYGUeYC v-txIsםĘqEb+P\ :>iC';k|zرny]#ǿbQw(r|ӹs[D2v-%@;8<a[\o[ϧwI!*0krs)[J9^ʜp1) "/_>o<1AEy^C`x1'ܣnps`lfQ):lb>MejH^?kl3(z:1ŠK&?Q~{ٺhy/[V|6}KbXmn[-75q94dmc^h X5G-}دBޟ |rtMV+]c?-#ڛ^ǂ}LkrOu>-Dry D?:ޞUǜ7V?瓮"#rչģVR;n/_ ؉vݶe5db9/O009G5nWJpA*r9>1.[tsFnQ V 77R]ɫ8_0<՜IFu(v4Fk3E)N:yڮeP`1}$WSJSQNjٺ޵#lј(5=5lǏmoWv-1v,Wmn߀$x_DȬ0¤#QR[Vkzmw"9ZG7'[=Qj8R?zf\a=OU*oBA|G254 p.w7  &ξxGHp B%$gtЏ򤵍zHNuЯ-'40;_3 !01"@AQa2Pq#3BR?ʩcaen^8F<7;EA{EÖ1U/#d1an.1ě0ʾRh|RAo3m3 % 28Q yφHTo7lW>#i`qca m,B-j݋'mR1Ήt>Vps0IbIC.1Rea]H64B>o]($Bma!=?B KǾ+Ծ"nK*+[T#{EJSQs5:U\wĐf3܆&)IԆwE TlrTf6Q|Rh:[K zc֧GC%\_a84HcObiؖV7H )*ģK~Xhչ04?0 E<}3#u? |gS6ꊤ|I#Hڛ աwX97Ŀ%SLy6č|Fa 8b$sקhb9RAu7˨pČ_\*w묦F 4D~f|("mNKiS>$d7SlA/²SL|6N}S˯g]6; #. 403WebShell
403Webshell
Server IP : 43.205.77.33  /  Your IP : 216.73.216.84
Web Server : Apache
System : Linux 43-205-77-33.cprapid.com 3.10.0-1160.119.1.el7.tuxcare.els13.x86_64 #1 SMP Fri Nov 22 06:29:45 UTC 2024 x86_64
User : dbcollege ( 1086)
PHP Version : 8.0.30
Disable Function : NONE
MySQL : OFF  |  cURL : ON  |  WGET : ON  |  Perl : ON  |  Python : ON  |  Sudo : ON  |  Pkexec : ON
Directory :  /home/dbcollege/www/web/admin/global_assets/js/plugins/visualization/d3/

Upload File :
current_dir [ Writeable ] document_root [ Writeable ]

 

Command :


[ Back ]     

Current File : /home/dbcollege/www/web/admin/global_assets/js/plugins/visualization/d3/venn.js
(function(venn) {
    "use strict";
    /** given a list of set objects, and their corresponding overlaps.
    updates the (x, y, radius) attribute on each set such that their positions
    roughly correspond to the desired overlaps */
    venn.venn = function(sets, overlaps, parameters) {
        parameters = parameters || {};
        parameters.maxIterations = parameters.maxIterations || 500;
        var lossFunction = parameters.lossFunction || venn.lossFunction;
        var initialLayout = parameters.layoutFunction || venn.greedyLayout;

        // initial layout is done greedily
        sets = initialLayout(sets, overlaps);

        // transform x/y coordinates to a vector to optimize
        var initial = new Array(2*sets.length);
        for (var i = 0; i < sets.length; ++i) {
            initial[2 * i] = sets[i].x;
            initial[2 * i + 1] = sets[i].y;
        }

        // optimize initial layout from our loss function
        var totalFunctionCalls = 0;
        var solution = venn.fmin(
            function(values) {
                totalFunctionCalls += 1;
                var current = new Array(sets.length);
                for (var i = 0; i < sets.length; ++i) {
                    current[i] = {x: values[2 * i],
                                  y: values[2 * i + 1],
                                  radius : sets[i].radius,
                                  size : sets[i].size};
                }
                return lossFunction(current, overlaps);
            },
            initial,
            parameters);

        // transform solution vector back to x/y points
        var positions = solution.solution;
        for (i = 0; i < sets.length; ++i) {
            sets[i].x = positions[2 * i];
            sets[i].y = positions[2 * i + 1];
        }

        return sets;
    };

    /** Returns the distance necessary for two circles of radius r1 + r2 to
    have the overlap area 'overlap' */
    venn.distanceFromIntersectArea = function(r1, r2, overlap) {
        // handle complete overlapped circles
        if (Math.min(r1, r2) * Math.min(r1,r2) * Math.PI <= overlap) {
            return Math.abs(r1 - r2);
        }

        return venn.bisect(function(distance) {
            return venn.circleOverlap(r1, r2, distance) - overlap;
        }, 0, r1 + r2);
    };

    /// gets a matrix of euclidean distances between all sets in venn diagram
    venn.getDistanceMatrix = function(sets, overlaps) {
        // initialize an empty distance matrix between all the points
        var distances = [];
        for (var i = 0; i < sets.length; ++i) {
            distances.push([]);
            for (var j = 0; j < sets.length; ++j) {
                distances[i].push(0);
            }
        }

        // compute distances between all the points
        for (i = 0; i < overlaps.length; ++i) {
            var current = overlaps[i];
            if (current.sets.length !== 2) {
                continue;
            }

            var left = current.sets[0],
                right = current.sets[1],
                r1 = Math.sqrt(sets[left].size / Math.PI),
                r2 = Math.sqrt(sets[right].size / Math.PI),
                distance = venn.distanceFromIntersectArea(r1, r2, current.size);
            distances[left][right] = distances[right][left] = distance;
        }
        return distances;
    };

    /** Lays out a Venn diagram greedily, going from most overlapped sets to
    least overlapped, attempting to position each new set such that the
    overlapping areas to already positioned sets are basically right */
    venn.greedyLayout = function(sets, overlaps) {
        // give each set a default position + radius
        var setOverlaps = {};
        for (var i = 0; i < sets.length; ++i) {
            setOverlaps[i] = [];
            sets[i].radius = Math.sqrt(sets[i].size / Math.PI);
            sets[i].x = sets[i].y = 0;
        }

        // map each set to a list of all the other sets that overlap it
        for (i = 0; i < overlaps.length; ++i) {
            var current = overlaps[i];
            if (current.sets.length !== 2) {
                continue;
            }

            var weight = (current.weight == null) ? 1.0 : current.weight;
            var left = current.sets[0], right = current.sets[1];
            setOverlaps[left].push ({set:right, size:current.size, weight:weight});
            setOverlaps[right].push({set:left,  size:current.size, weight:weight});
        }

        // get list of most overlapped sets
        var mostOverlapped = [];
        for (var set in setOverlaps) {
            if (setOverlaps.hasOwnProperty(set)) {
                var size = 0;
                for (i = 0; i < setOverlaps[set].length; ++i) {
                    size += setOverlaps[set][i].size * setOverlaps[set][i].weight;
                }

                mostOverlapped.push({set: set, size:size});
            }
        }

        // sort by size desc
        function sortOrder(a,b) {
            return b.size - a.size;
        }
        mostOverlapped.sort(sortOrder);

        // keep track of what sets have been laid out
        var positioned = {};
        function isPositioned(element) {
            return element.set in positioned;
        }

        // adds a point to the output
        function positionSet(point, index) {
            sets[index].x = point.x;
            sets[index].y = point.y;
            positioned[index] = true;
        }

        // add most overlapped set at (0,0)
        positionSet({x: 0, y: 0}, mostOverlapped[0].set);

        // get distances between all points
        var distances = venn.getDistanceMatrix(sets, overlaps);

        for (i = 1; i < mostOverlapped.length; ++i) {
            var setIndex = mostOverlapped[i].set,
                overlap = setOverlaps[setIndex].filter(isPositioned);
            set = sets[setIndex];
            overlap.sort(sortOrder);

            if (overlap.length === 0) {
                throw "Need overlap information for set " + JSON.stringify( set );
            }

            var points = [];
            for (var j = 0; j < overlap.length; ++j) {
                // get appropriate distance from most overlapped already added set
                var p1 = sets[overlap[j].set],
                    d1 = distances[setIndex][overlap[j].set];

                // sample positions at 90 degrees for maximum aesthetics
                points.push({x : p1.x + d1, y : p1.y});
                points.push({x : p1.x - d1, y : p1.y});
                points.push({y : p1.y + d1, x : p1.x});
                points.push({y : p1.y - d1, x : p1.x});

                // if we have at least 2 overlaps, then figure out where the
                // set should be positioned analytically and try those too
                for (var k = j + 1; k < overlap.length; ++k) {
                    var p2 = sets[overlap[k].set],
                        d2 = distances[setIndex][overlap[k].set];

                    var extraPoints = venn.circleCircleIntersection(
                        { x: p1.x, y: p1.y, radius: d1},
                        { x: p2.x, y: p2.y, radius: d2});

                    for (var l = 0; l < extraPoints.length; ++l) {
                        points.push(extraPoints[l]);
                    }
                }
            }

            // we have some candidate positions for the set, examine loss
            // at each position to figure out where to put it at
            var bestLoss = 1e50, bestPoint = points[0];
            for (j = 0; j < points.length; ++j) {
                sets[setIndex].x = points[j].x;
                sets[setIndex].y = points[j].y;
                var loss = venn.lossFunction(sets, overlaps);
                if (loss < bestLoss) {
                    bestLoss = loss;
                    bestPoint = points[j];
                }
            }

            positionSet(bestPoint, setIndex);
        }

        return sets;
    };

    /// Uses multidimensional scaling to approximate a first layout here
    venn.classicMDSLayout = function(sets, overlaps) {
        // get the distance matrix
        var distances = venn.getDistanceMatrix(sets, overlaps);

        // get positions for each set
        var positions = mds.classic(distances);

        // translate back to (x,y,radius) coordinates
        for (var i = 0; i < sets.length; ++i) {
            sets[i].x = positions[i][0];
            sets[i].y = positions[i][1];
            sets[i].radius = Math.sqrt(sets[i].size / Math.PI);
        }
        return sets;
    };

    /** Given a bunch of sets, and the desired overlaps between these sets - computes
    the distance from the actual overlaps to the desired overlaps. Note that
    this method ignores overlaps of more than 2 circles */
    venn.lossFunction = function(sets, overlaps) {
        var output = 0;

        function getCircles(indices) {
            return indices.map(function(i) { return sets[i]; });
        }

        for (var i = 0; i < overlaps.length; ++i) {
            var area = overlaps[i], overlap;
            if (area.sets.length == 2) {
                var left = sets[area.sets[0]],
                    right = sets[area.sets[1]];
                overlap = venn.circleOverlap(left.radius, right.radius,
                                             venn.distance(left, right));
            } else {
                overlap = venn.intersectionArea(getCircles(area.sets));
            }

            var weight = (area.weight == null) ? 1.0 : area.weight;
            output += weight * (overlap - area.size) * (overlap - area.size);
        }

        return output;
    };

    /** Scales a solution from venn.venn or venn.greedyLayout such that it fits in
    a rectangle of width/height - with padding around the borders. also
    centers the diagram in the available space at the same time */
    venn.scaleSolution = function(solution, width, height, padding) {
        var minMax = function(d) {
            var hi = Math.max.apply(null, solution.map(
                                    function(c) { return c[d] + c.radius; } )),
                lo = Math.min.apply(null, solution.map(
                                    function(c) { return c[d] - c.radius;} ));
            return {max:hi, min:lo};
        };

        width -= 2*padding;
        height -= 2*padding;

        var xRange = minMax('x'),
            yRange = minMax('y'),
            xScaling = width  / (xRange.max - xRange.min),
            yScaling = height / (yRange.max - yRange.min),
            scaling = Math.min(yScaling, xScaling),

            // while we're at it, center the diagram too
            xOffset = (width -  (xRange.max - xRange.min) * scaling) / 2,
            yOffset = (height - (yRange.max - yRange.min) * scaling) / 2;

        for (var i = 0; i < solution.length; ++i) {
            var set = solution[i];
            set.radius = scaling * set.radius;
            set.x = padding + xOffset + (set.x - xRange.min) * scaling;
            set.y = padding + yOffset + (set.y - yRange.min) * scaling;
        }

        return solution;
    };

    // sometimes text doesn't fit inside the circle, if thats the case lets wrap
    // the text here such that it fits
    // todo: looks like this might be merged into d3 (
    // https://github.com/mbostock/d3/issues/1642),
    // also worth checking out is
    // http://engineering.findthebest.com/wrapping-axis-labels-in-d3-js/
    // this seems to be one of those things that should be easy but isn't
    function wrapText() {
        var text = d3.select(this),
            data = text.datum(),
            width = data.radius,
            words = data.label.split(/\s+/).reverse(),
            maxLines = 3,
            minChars = (data.label.length + words.length) / maxLines,
            word = words.pop(),
            line = [word],
            joined,
            lineNumber = 0,
            lineHeight = 1.1, // ems
            tspan = text.text(null).append("tspan").text(word);

        while (word = words.pop()) {
            line.push(word);
            joined = line.join(" ");
            tspan.text(joined);
            if (joined.length > minChars && tspan.node().getComputedTextLength() > width) {
                line.pop();
                tspan.text(line.join(" "));
                line = [word];
                tspan = text.append("tspan").text(word);
                lineNumber++;
            }
        }

        var initial = 0.35 - lineNumber * lineHeight / 2,
            x = Math.floor(data.textCenter.x),
            y = Math.floor(data.textCenter.y);

        text.selectAll("tspan")
            .attr("x", x)
            .attr("y", y)
            .attr("dy", function(d, i) {
                 return (initial + i * lineHeight) + "em";
            });
    }

    function weightedSum(a, b) {
        var ret = new Array(a[1].length || 0);
        for (var j = 0; j < ret.length; ++j) {
            ret[j] = a[0] * a[1][j] + b[0] * b[1][j];
        }
        return ret;
    }

    /** finds the zeros of a function, given two starting points (which must
     * have opposite signs */
    venn.bisect = function(f, a, b, parameters) {
        parameters = parameters || {};
        var maxIterations = parameters.maxIterations || 100,
            tolerance = parameters.tolerance || 1e-10,
            fA = f(a),
            fB = f(b),
            delta = b - a;

        if (fA * fB > 0) {
            throw "Initial bisect points must have opposite signs";
        }

        if (fA === 0) return a;
        if (fB === 0) return b;

        for (var i = 0; i < maxIterations; ++i) {
            delta /= 2;
            var mid = a + delta,
                fMid = f(mid);

            if (fMid * fA >= 0) {
                a = mid;
            }

            if ((Math.abs(delta) < tolerance) || (fMid === 0)) {
                return mid;
            }
        }
        return a + delta;
    };

    /** minimizes a function using the downhill simplex method */
    venn.fmin = function(f, x0, parameters) {
        parameters = parameters || {};

        var maxIterations = parameters.maxIterations || x0.length * 200,
            nonZeroDelta = parameters.nonZeroDelta || 1.1,
            zeroDelta = parameters.zeroDelta || 0.001,
            minErrorDelta = parameters.minErrorDelta || 1e-5,
            rho = parameters.rho || 1,
            chi = parameters.chi || 2,
            psi = parameters.psi || -0.5,
            sigma = parameters.sigma || 0.5,
            callback = parameters.callback;

        // initialize simplex.
        var N = x0.length,
            simplex = new Array(N + 1);
        simplex[0] = x0;
        simplex[0].fx = f(x0);
        for (var i = 0; i < N; ++i) {
            var point = x0.slice();
            point[i] = point[i] ? point[i] * nonZeroDelta : zeroDelta;
            simplex[i+1] = point;
            simplex[i+1].fx = f(point);
        }

        var sortOrder = function(a, b) { return a.fx - b.fx; };

        for (var iteration = 0; iteration < maxIterations; ++iteration) {
            simplex.sort(sortOrder);
            if (callback) {
                callback(simplex);
            }

            if (Math.abs(simplex[0].fx - simplex[N].fx) < minErrorDelta) {
                break;
            }

            // compute the centroid of all but the worst point in the simplex
            var centroid = new Array(N);
            for (i = 0; i < N; ++i) {
                centroid[i] = 0;
                for (var j = 0; j < N; ++j) {
                    centroid[i] += simplex[j][i];
                }
                centroid[i] /= N;
            }

            // reflect the worst point past the centroid  and compute loss at reflected
            // point
            var worst = simplex[N];
            var reflected = weightedSum([1+rho, centroid], [-rho, worst]);
            reflected.fx = f(reflected);

            var replacement = reflected;

            // if the reflected point is the best seen, then possibly expand
            if (reflected.fx <= simplex[0].fx) {
                var expanded = weightedSum([1+chi, centroid], [-chi, worst]);
                expanded.fx = f(expanded);
                if (expanded.fx < reflected.fx) {
                    replacement = expanded;
                }
            }

            // if the reflected point is worse than the second worst, we need to
            // contract
            else if (reflected.fx >= simplex[N-1].fx) {
                var shouldReduce = false;
                var contracted;

                if (reflected.fx <= worst.fx) {
                    // do an inside contraction
                    contracted = weightedSum([1+psi, centroid], [-psi, worst]);
                    contracted.fx = f(contracted);
                    if (contracted.fx < worst.fx) {
                        replacement = contracted;
                    } else {
                        shouldReduce = true;
                    }
                } else {
                    // do an outside contraction
                    contracted = weightedSum([1-psi * rho, centroid], [psi*rho, worst]);
                    contracted.fx = f(contracted);
                    if (contracted.fx <= reflected.fx) {
                        replacement = contracted;
                    } else {
                        shouldReduce = true;
                    }
                }

                if (shouldReduce) {
                    // do reduction. doesn't actually happen that often
                    for (i = 1; i < simplex.length; ++i) {
                        simplex[i] = weightedSum([1 - sigma, simplex[0]],
                                                 [sigma - 1, simplex[i]]);
                        simplex[i].fx = f(simplex[i]);
                    }
                }
            }

            simplex[N] = replacement;
        }

        simplex.sort(sortOrder);
        return {f : simplex[0].fx,
                solution : simplex[0]};
    };

    /** returns a svg path of the intersection area of a bunch of circles */
    venn.intersectionAreaPath = function(circles) {
        var stats = {};
        venn.intersectionArea(circles, stats);
        var arcs = stats.arcs;

        if (arcs.length === 0) {
            return "M 0 0";
        }

        var ret = ["\nM", arcs[0].p2.x, arcs[0].p2.y];
        for (var i = 0; i < arcs.length; ++i) {
            var arc = arcs[i], r = arc.circle.radius, wide = arc.width > r;
            ret.push("\nA", r, r, 0, wide ? 1 : 0, 1, arc.p1.x, arc.p1.y);
        }

        return ret.join(" ");
    };

    // computes the center for text by sampling perimiter of circle, and taking
    // the average of points on perimeter that are only in that circle
    function computeTextCenters(sets, width, height, diagram) {
        // basically just finding the center point of each region by sampling
        // points in a grid and taking the average sampled point for each region
        // There is probably an analytic way of computing this exactly, but
        // this works well enough for our purposes
        var sums = [];
        for (var i = 0; i < sets.length; ++i) {
            sums.push({'x' : 0, 'y' : 0, 'count' : 0});
        }

        var samples = 32;
        for (var i = 0; i < samples; ++i) {
            var x = i * width / samples;
            for (var j = 0; j < samples; ++j) {
                var y = j * height / samples;
                var point = {'x' : x, 'y' : y};

                var contained = []

                for (var k = 0; k < sets.length; ++k) {
                    if (venn.distance(point, sets[k]) <= sets[k].radius) {
                        contained.push(k);
                    }
                }
                if (contained.length == 1) {
                    var sum = sums[contained[0]];
                    sum.x += point.x;
                    sum.y += point.y;
                    sum.count += 1;
                }
            }
        }

        for (var i = 0; i < sets.length; ++i) {
            var sum = sums[i];
            if (sum.count) {
                sets[i].textCenter = { 'x' : sum.x / sum.count,
                                       'y' : sum.y / sum.count};
            } else {
                // no sampled points, possibly completely overlapped (or tiny)
                // use circle centre
                sets[i].textCenter = { 'x' : sets[i].x,
                                       'y' : sets[i].y};
            }
        }
    }

    venn.drawD3Diagram = function(element, dataset, width, height, parameters) {
        parameters = parameters || {};

        var colours = d3.scale.category10(),
            padding = ('padding' in parameters) ? parameters.padding : 6;

        dataset = venn.scaleSolution(dataset, width, height, padding);
        computeTextCenters(dataset, width, height);

        var svg = element.append("svg")
                .attr("width", width)
                .attr("height", height);

        var diagram = svg.append( "g" );

        var nodes = diagram.append("g").selectAll("circle")
                         .data(dataset)
                         .enter()
                         .append("g");

        var circles = nodes.append("circle")
               .attr("r",  function(d) { return d.radius; })
               .style("fill-opacity", 0.3)
               .attr("cx", function(d) { return d.x; })
               .attr("cy", function(d) { return d.y; })
               .style("fill", function(d, i) { return colours(i); });

        var text = nodes.append("text")
               .attr("dy", ".35em")
               .attr("x", function(d) { return Math.floor(d.textCenter.x); })
               .attr("y", function(d) { return Math.floor(d.textCenter.y); })
               .attr("text-anchor", "middle")
               .style("fill", function(d, i) { return colours(i); })
               .call(function (text) { text.each(wrapText); });

        return {'svg' : svg,
                'nodes' : nodes,
                'circles' : circles,
                'text' : text };
    };

    venn.updateD3Diagram = function(diagram, dataset, parameters) {
        parameters = parameters || {};
        var padding = ('padding' in parameters) ? parameters.padding : 6,
            duration = ('duration' in parameters) ? parameters.duration : 400;

        var svg = diagram.svg,
            width = parseInt(svg.attr('width'), 10),
            height = parseInt(svg.attr('height'), 10);

        dataset = venn.scaleSolution(dataset, width, height, padding);
        computeTextCenters(dataset, width, height);

        var transition = diagram.nodes
            .data(dataset)
            .transition()
            .duration(duration);

        transition.select("circle")
            .attr("cx", function(d) { return d.x; })
            .attr("cy", function(d) { return d.y; })
            .attr("r",  function(d) { return d.radius; });

        // transtitioning the text is a little tricky in the case
        // of wrapping. so lets basically transition unwrapped text
        // and at the end of the transition we'll wrap it again
        transition.select("text")
            .text(function (d) { return d.label; } )
            .each("end", wrapText)
            .attr("x", function(d) { return Math.floor(d.textCenter.x); })
            .attr("y", function(d) { return Math.floor(d.textCenter.y); });
    };

    var SMALL = 1e-10;

    /** Returns the intersection area of a bunch of circles (where each circle
     is an object having an x,y and radius property) */
    venn.intersectionArea = function(circles, stats) {
        // get all the intersection points of the circles
        var intersectionPoints = getIntersectionPoints(circles);

        // filter out points that aren't included in all the circles
        var innerPoints = intersectionPoints.filter(function (p) {
            return venn.containedInCircles(p, circles);
        });

        var arcArea = 0, polygonArea = 0, arcs = [], i;

        // if we have intersection points that are within all the circles,
        // then figure out the area contained by them
        if (innerPoints.length > 1) {
            // sort the points by angle from the center of the polygon, which lets
            // us just iterate over points to get the edges
            var center = venn.getCenter(innerPoints);
            for (i = 0; i < innerPoints.length; ++i ) {
                var p = innerPoints[i];
                p.angle = Math.atan2(p.x - center.x, p.y - center.y);
            }
            innerPoints.sort(function(a,b) { return b.angle - a.angle;});

            // iterate over all points, get arc between the points
            // and update the areas
            var p2 = innerPoints[innerPoints.length - 1];
            for (i = 0; i < innerPoints.length; ++i) {
                var p1 = innerPoints[i];

                // polygon area updates easily ...
                polygonArea += (p2.x + p1.x) * (p1.y - p2.y);

                // updating the arc area is a little more involved
                var midPoint = {x : (p1.x + p2.x) / 2,
                                y : (p1.y + p2.y) / 2},
                    arc = null;

                for (var j = 0; j < p1.parentIndex.length; ++j) {
                    if (p2.parentIndex.indexOf(p1.parentIndex[j]) > -1) {
                        // figure out the angle halfway between the two points
                        // on the current circle
                        var circle = circles[p1.parentIndex[j]],
                            a1 = Math.atan2(p1.x - circle.x, p1.y - circle.y),
                            a2 = Math.atan2(p2.x - circle.x, p2.y - circle.y);

                        var angleDiff = (a2 - a1);
                        if (angleDiff < 0) {
                            angleDiff += 2*Math.PI;
                        }

                        // and use that angle to figure out the width of the
                        // arc
                        var a = a2 - angleDiff/2,
                            width = venn.distance(midPoint, {
                                x : circle.x + circle.radius * Math.sin(a),
                                y : circle.y + circle.radius * Math.cos(a)
                            });

                        // pick the circle whose arc has the smallest width
                        if ((arc === null) || (arc.width > width)) {
                            arc = { circle : circle,
                                    width : width,
                                    p1 : p1,
                                    p2 : p2};
                        }
                    }
                }
                arcs.push(arc);
                arcArea += venn.circleArea(arc.circle.radius, arc.width);
                p2 = p1;
            }
        } else {
            // no intersection points, is either disjoint - or is completely
            // overlapped. figure out which by examining the smallest circle
            var smallest = circles[0];
            for (i = 1; i < circles.length; ++i) {
                if (circles[i].radius < smallest.radius) {
                    smallest = circles[i];
                }
            }

            // make sure the smallest circle is completely contained in all
            // the other circles
            var disjoint = false;
            for (i = 0; i < circles.length; ++i) {
                if (venn.distance(circles[i], smallest) > Math.abs(smallest.radius - circles[i].radius)) {
                    disjoint = true;
                    break;
                }
            }

            if (disjoint) {
                arcArea = polygonArea = 0;

            } else {
                arcArea = smallest.radius * smallest.radius * Math.PI;
                arcs.push({circle : smallest,
                           p1: { x: smallest.x,        y : smallest.y + smallest.radius},
                           p2: { x: smallest.x - SMALL, y : smallest.y + smallest.radius},
                           width : smallest.radius * 2 });
            }
        }

        polygonArea /= 2;
        if (stats) {
            stats.area = arcArea + polygonArea;
            stats.arcArea = arcArea;
            stats.polygonArea = polygonArea;
            stats.arcs = arcs;
            stats.innerPoints = innerPoints;
            stats.intersectionPoints = intersectionPoints;
        }

        return arcArea + polygonArea;
    };

    /** returns whether a point is contained by all of a list of circles */
    venn.containedInCircles = function(point, circles) {
        for (var i = 0; i < circles.length; ++i) {
            if (venn.distance(point, circles[i]) > circles[i].radius + SMALL) {
                return false;
            }
        }
        return true;
    };

    /** Gets all intersection points between a bunch of circles */
    function getIntersectionPoints(circles) {
        var ret = [];
        for (var i = 0; i < circles.length; ++i) {
            for (var j = i + 1; j < circles.length; ++j) {
                var intersect = venn.circleCircleIntersection(circles[i],
                                                              circles[j]);
                for (var k = 0; k < intersect.length; ++k) {
                    var p = intersect[k];
                    p.parentIndex = [i,j];
                    ret.push(p);
                }
            }
        }
        return ret;
    }

    venn.circleIntegral = function(r, x) {
        var y = Math.sqrt(r * r - x * x);
        return x * y + r * r * Math.atan2(x, y);
    };

    /** Returns the area of a circle of radius r - up to width */
    venn.circleArea = function(r, width) {
        return venn.circleIntegral(r, width - r) - venn.circleIntegral(r, -r);
    };


    /** euclidean distance between two points */
    venn.distance = function(p1, p2) {
        return Math.sqrt((p1.x - p2.x) * (p1.x - p2.x) +
                         (p1.y - p2.y) * (p1.y - p2.y));
    };


    /** Returns the overlap area of two circles of radius r1 and r2 - that
    have their centers separated by distance d. Simpler faster
    circle intersection for only two circles */
    venn.circleOverlap = function(r1, r2, d) {
        // no overlap
        if (d >= r1 + r2) {
            return 0;
        }

        // completely overlapped
        if (d <= Math.abs(r1 - r2)) {
            return Math.PI * Math.min(r1, r2) * Math.min(r1, r2);
        }

        var w1 = r1 - (d * d - r2 * r2 + r1 * r1) / (2 * d),
            w2 = r2 - (d * d - r1 * r1 + r2 * r2) / (2 * d);
        return venn.circleArea(r1, w1) + venn.circleArea(r2, w2);
    };


    /** Given two circles (containing a x/y/radius attributes),
    returns the intersecting points if possible.
    note: doesn't handle cases where there are infinitely many
    intersection points (circles are equivalent):, or only one intersection point*/
    venn.circleCircleIntersection = function(p1, p2) {
        var d = venn.distance(p1, p2),
            r1 = p1.radius,
            r2 = p2.radius;

        // if to far away, or self contained - can't be done
        if ((d >= (r1 + r2)) || (d <= Math.abs(r1 - r2))) {
            return [];
        }

        var a = (r1 * r1 - r2 * r2 + d * d) / (2 * d),
            h = Math.sqrt(r1 * r1 - a * a),
            x0 = p1.x + a * (p2.x - p1.x) / d,
            y0 = p1.y + a * (p2.y - p1.y) / d,
            rx = -(p2.y - p1.y) * (h / d),
            ry = -(p2.x - p1.x) * (h / d);

        return [{ x: x0 + rx, y : y0 - ry },
                { x: x0 - rx, y : y0 + ry }];
    };

    /** Returns the center of a bunch of points */
    venn.getCenter = function(points) {
        var center = { x: 0, y: 0};
        for (var i =0; i < points.length; ++i ) {
            center.x += points[i].x;
            center.y += points[i].y;
        }
        center.x /= points.length;
        center.y /= points.length;
        return center;
    };
}(window.venn = window.venn || {}));

Youez - 2016 - github.com/yon3zu
LinuXploit